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range (see Gallistel’s commentary), must
pose processing problems for real live sub-
jects that have internal processing noise; for
example, constant threshold variance must
avoid negative threshold values as the MTS
subjective scale approaches zero. But truncat-
ing the threshold distribution at zero means
that it is no longer constant, and is less so the
closer the decay function is to zero.

Deterministic accounts are in principle er-
ror free, but a major thrust of psychophysics
for many years has been to understand sourc-
es of variability and error. We need to know
more about how errors are produced in this
system before an evaluation can be made. On

its face, MTS appears to avoid the variance
problem by simply remaining silent.
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MODELING MODELING
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Models are tools; they need to fit both the hand and the task. Presence or absence of a feature such
as a pacemaker or a cascade is not in itself good. Or bad. Criteria for model evaluation involve
benefit-cost ratios, with the numerator a function of the range of phenomena explained, goodness
of fit, consistency with other nearby models, and intangibles such as beauty. The denominator is a
function of complexity, the number of phenomena that must be ignored, and the effort necessary
to incorporate the model into one’s parlance. Neither part of the ratio can yet be evaluated for
MTS, whose authors provide some cogent challenges to SET.
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If you think models are about the truth, or
that there is a best timing model, then you
are in trouble. There is no best model, any
more than there is a best car model or swim-
suit model, even though each of us may have
our favorites. It all depends on what you want
to do with the model. Nor are models theo-
reticians’ guns of domination, any more than
data are empiricists’ bullets of assault. War
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games can be fun, however, especially when
you do not have entangling alliances with the
principles, and can just watch them swat it
out. Will the grapplers or the punchers win
this year? It happens to empiricists too, failing
to replicate and sniffing about controls, but
somehow it is more fun when it is the guys in
suits, the guys who prefer ln to log, the guys
who try to explain your data to you, are going
at it.

And it is a good thing for them to do, too.
Do you want to attempt to tell a Gibbon that
his integral is improper? Or a Staddon that
he might have one too many layers in his
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leaky cascade? Besides, if John ****on shows
that John ****on’s models are wrong or ir-
relevant, well, then, so much less for us to feel
guilty about not mastering; and if we wait a
few years, with any luck J*** H*** will upset
the survivor from this round.

So, what do we mortals hope to learn from
this paper, other than that, apparently, heavy
experimental equipment cannnot be operat-
ed after doing too many integrals? Perhaps
that conceptual analysis is always relevant, no
matter how mathematical a theory. Or how
verbal. Pictures, either explicit (e.g., Staddon
& Higa’s Figures 3 and 4) or implicit (e.g.,
Skinner’s reflex reserve, pictured in Killeen,
1988), are the foundation of models. They
are the skeletons that get muscled by math-
ematics and padded by words. Until recently
models were valued to the extent that they
had such a visualizable (anshaulich) founda-
tion (Miller, 1984). One is never wrong to re-
fer back to pictures for guidance.

Models are go-betweens: They go between
the data and our sense of understanding.
This is as true of Skinner’s models (e.g., the
three-term contingency, reinforcement, the
mand) as it is of the paraphernalia of timing.
To the extent that models fail to make con-
tact with the data or with our sense of under-
standing, they fail. In the first case their death
is quick; in the second, the models languish
until Burked by boredom.

If we sit out too many rounds, we might
wind up as mere paying spectators, couch po-
tatoes, Monday morning quarterbacks. This is
safer, retrospectively smarter, but ultimately a
less reinforcing posture. After all, it is we who
are paying them with our attention. This is a
game worth getting into.

And play we must, because all understand-
ing involves models—reference to systems
that exist in a different domain than the
thing studied. Loose models make vague ref-
erence to ambiguous or ad hoc causes. Tight-
er models are more careful about definitions
and avoid gratuitous entities. Models of phe-
nomena are not causes of phenomena; they
are descriptions of hypothetical structures or
functions that aid explanation, prediction,
and control. Their promulgators may believe
that such structures exist, or that they have a
particular instantiation, or that they were
sighted last year in the medulla oblongata; in-
teresting, certainly, but such beliefs are not

what is most important about the models. A
model may be functionally brilliant without
being structurally enlightening. Such was the
case for Newton’s mechanics. To get to the
heart of a matter does not require that the
matter have ventricles.

Washing the Baby
To use models effectively, and to under-

stand those of others, scientists must undergo
some training. In many cases this means
studying some math. In The Behavior of Organ-
isms, Skinner (1938) formulated rich verbal
descriptions of acquisition, discrimination,
and extinction that presaged Hull’s more
mathematical treatments, and were directly
translatable into them. He inveighed against
the ‘‘paper dolls’’ of models only after his log-
arithmic extinction curves were criticized (by
Ellson, 1939). It was perhaps easier for Skin-
ner to throw out his model baby than to learn
how to bathe it. It is an advantage of a model
and its packaging, however—not a defect—
that its emissions and omissions can be dis-
criminated. Most other parents would have
held their breath and cleaned.

Staddon and Higa detect an odor arising
from Gibbon and Church’s baby, and don’t
like the way it is dealt with. ‘‘Too many layers
of diapers’’ they seem to say. But it ain’t their
kid, and because they are raising one of their
own, it is best just to sluice out the nest.

Watching the Baby
So, how about their neonate, the pacemak-

er-free model of timing? This issue records
the village tour, as we peer into the pram,
listen to the neighbors’ comments, and make
a few of our own. But the new infant is scarce-
ly old enough to have soiled itself, let alone
to have done much with its limbs; we will have
to judge it from its looks, not its parents’
promises. Analysis of its sibling (Staddon &
Higa, 1997) would be worthwhile; but this
one and its commentaries are already de-
manding enough, and we just do not have
enough attention left in our wallets, what with
the other game we hoped to catch. In fact, it
is easier to listen to the local gossip about the
kid than to study its features, and that is why
some of you skipped ahead to here just now.

Making Paces
So then, what about some of its parents’

claims for the multiple-time-scale (MTS)
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model: Is it possible to have a pacemaker-free
model of timing? What does a pacemaker add
that makes it worth having, and with what
have Staddon and Higa replaced it?

A pacemaker is a model generator. Say you
want to boil an egg for 4 minutes, and have
to decide when it is time to quench it. You
need to subtract the time of day you started
it from the current time of day, and compare
the difference to a model—a model of 4 min-
utes. A prosthesis helps. You can buy an egg
timer that is a sand clock; invert it and it takes
4 minutes for the sand to empty into the bot-
tom vessel. Inverting it resets the origin to
zero, and its completion represents a model
of 4 minutes.

If you want to grill a fish for 10 minutes,
you need a different model. Imagine a kitch-
en with a row of sand clocks, sitting under
the row of spices, ranging from a garlicky 15
seconds up to a turkey 4 hours. Hinged, per-
haps, to invert upon a touch. Quaint, but in-
efficient. There is a better prosthesis avail-
able: one of those wind-up timers that we use
to alert us when to change the pigeons. It
contains all of the sand clocks in a single por-
table device. Buy one of those, and you have
bought yourself a pacemaker. It can model
any interval up to an hour, and ring a bell as
a discriminative stimulus for you to leave the
meeting. Those are handy devices in collo-
quia, even if you do not have any pigeons
running.

What most clocks do, and what all accurate
clocks do, is make and measure paces. Water
clocks and candles do not have pacemakers;
they move a measured quantity of matter at
a relatively constant rate, and signal when it
is all gone. They are inaccurate. Mechanical
and electrical clocks meter the number of cy-
cles of an oscillator. They measure them by
mapping them to a spatial interval, such as
the circuit of the clock face; or they count
them by incrementing an integer, as do digi-
tal watches. The pacemaker is an oscillator, as
is anything that rotates or revolves or
swings—anything, that is, that can be mod-
eled as an oscillator.

To use the pacemaker, you need to count
or measure its output. The finer the scale and
the more accurate the period, the more mod-
el intervals you can generate. The earth is a
pacemaker. It rotates around its axis. Its
course can be subdivided with a sundial to

time the day. Its rotations can be counted on
a calendar to time the year. Calendar reforms
have made this a fine art, primarily by know-
ing when to reset the year counter to main-
tain a correspondence between the months
and the seasons of the year, the latter gener-
ated by an independent pacemaker—earth’s
revolutions around the sun.

Counting them. Our location in time is re-
corded as years (from an arbitrary origin)
plus months plus days plus hours, and so
forth. Whenever a second elapses, our pace-
maker increments a seconds counter and re-
sets to zero; when that reaches 60 it incre-
ments a minutes counter and resets to zero;
when that reaches 12 it increments a p.m.
counter and resets to zero. And so on. This
is a counting cascade, with the output from
faster registers being passed to slower regis-
ters.

The Good News

Pacemaker-counter systems are a great in-
vention because the more oscillations you
count, the less important is accuracy in the
pacemaker. The subdivision of the period of
the sun by a sundial is inaccurate. Better to
multiply a fast oscillator than divide a slow
one. In a pacemaker-counter system, even the
worst pacemaker—one whose nth tick gives
absolutely no information about when its
next tick will come—can be part of an accu-
rate clock, if the pacemaker is fast enough.
The Poisson emitter is the mathematical
model of the worst possible pacemaker. It has
a constant probability of ticking at any instant
in time, and this probability is independent
of when the last tick occurred. If you count
enough of these ticks, however, you can be as
accurate as desired. In particular, your rela-
tive inaccuracy—the standard deviation divid-
ed by the mean—decreases as 1/Ïn.

If I ask you to say when 10 seconds have
elapsed without use of a watch, you are likely
to count ‘‘one-thous-and-one, one-thous-and-
two, . . . .’’ You are counting quarter seconds,
which you produce by rhythmic motions of
mouth and tongue. This is more accurate
than if you just guessed. You are timing by
counting: You are using a pacemaker-counter
system. Skinner forgive, for you have just
gainfully employed one instantiation of the
insidious hypothetical construct, pacemaker. If
you refuse to play my game again and use
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your watch, well, by this point you should
know what I would say.

The Bad News

The Poisson system—the worst possible
constant-rate pacemaker and the best possi-
ble counter—is mathematically a relatively
simple model. That is why it is used. It is a
subset of recurrent processes; you can replace
the Poisson emitter with a more accurate os-
cillator, and the relative accuracy will improve
further. But it cannot get worse. That is also
the bad news, because when animals time in-
tervals, their accuracy does not increase as
the inverse square root of the interval to be
timed. In fact their relative accuracy is rela-
tively constant. This is Weber’s law. It is also
a keystone of scalar expectancy theory (SET).
So, whereas the Poisson system is a good way
to model time, it is a bad way to model ani-
mals that time. To do that, the clock has to
be detuned.

Detuning the Clock

Where can error be added? The pacemak-
er is already almost as bad as it can get. One
way to make it worse is to add error to the
average rate of the pacemaker, a source of
variance invoked by SET. Another is to add
error to the counter. SET does that by having
the storage of the count add an error pro-
portional to the magnitude of the count. The
behavioral theory of timing (BeT; Killeen &
Fetterman, 1988) does it by having the pace-
maker run faster for shorter intervals and
slower for longer intervals, as though there
were a ceiling on how high the counter could
go. (The mechanism for this adjustment is as-
sumed to be the higher levels of arousal typ-
ically associated with the higher rates of re-
inforcement on short intervals.) Machado’s
(1997) learning to time (LeT), a continuous
version of BeT, also lets the speed of the pace-
maker vary with the interval to be timed. The
connectionist model of timing (Church &
Broadbent, 1991) adds error to a register of
counters that is proportional to the magni-
tude of the numbers they count.

Couching such models in mathematical
terms can be useful, because they can then
make more precise predictions that are sus-
ceptible to test. If they fail those tests, they
must be fixed or discarded. For instance, one
obscure mathematical model of pacemaker-

counter systems shows that under many dif-
ferent kinds of component error, the optimal
period of the pacemaker should be indepen-
dent of the interval to be timed; it predicts
the value of that optimal interval in terms of
the variances of the components; and it shows
that, under the stated assumptions, the origin
of Weber error must reside in the counter
(Killeen & Weiss, 1987).

Why maintain a pacemaker-counter model
if it must be fixed? Well, it is still a simple
model, and a simple model that is accurate is
much better than no model at all. All that is
required is the replacement of a simplifying
assumption (error-free counters) with a more
realistic one (error in counting). Many feel
that it is best to start with the simplest models
and adjust them only when the data require
it. This tactic keeps models understandable
until some of that simplicity starts to exact a
cost. Furthermore, the pacemaker-counter
system has some face validity, at least in the
realm in which intervals are long enough to
be counted. Finally, it has some ecological va-
lidity: All of the best clocks do it that way.

How MTS Works

How do Staddon and Higa get worse than
Poisson timing? They have a cascade of dif-
ferent interval timers, each of different (in-
creasing) natural periods (much like the egg
timers, arranged in order). The response out-
put is the positive difference between the cur-
rent input and the ‘‘memory’’ (VI; their Equa-
tion 15). The effect of a single input decays
proportionally with its magnitude (Equation
16), which entails an exponential decay of its
strength. One such unit feeds into (cascades
into) the next, with the next having a slower
rate constant (ai).

The cascade acts as a low-pass filter. If tem-
poral stimuli are coming at high frequencies,
the earliest-fastest units in the cascade get sat-
urated, and that blocks the signals from get-
ting through to the slower units downstream.
The first-fastest do all the work: It is variance
in their level of saturation that accounts for
most of the variance in the animal’s response.
If signals come more slowly, the fast units are
not saturated when they recur; their response
output to the next level of the cascade is
therefore greater (Equation 15), and those
slower levels start to pick up some of the bur-
den. This is a good thing, because the accu-



279COMMENTARY

racy of any one level decreases exponentially
with its level of saturation. One can see this
by noting that the change in time corre-
sponding to a small change (error) in trace
strength V grows as dt/dV 5 eat/a. This is
much worse than Poisson timing; much too
much worse.

So, how do Staddon and Higa move in the
other direction, and improve model perfor-
mance to get better than exponential error?
The secret is in the cascade. By passing the
ball to the slower units at longer intervals, the
system can operate in a closer to optimal
range. Furthermore, by passing the ball most
forcibly when the units are most accurate
(Equation 15 shows that the signal strength
decreases as a unit saturates) the bad perfor-
mance near saturation is not propagated
downstream. Their Figure 6 shows that by se-
lecting the rate at which these downstream
units are slowed, one can generate a range of
Weber functions.

The MTS Counter

The MTS model is a counting cascade, with
the output from faster registers being passed
to slower registers. A start-time marker must
discharge all the units so they can start timing
an interval afresh, like a bar that restores all
the egg timers to upright. (The authors prof-
itably speculate on empirical consequences of
weak start signals.) It must simultaneously ini-
tiate a start pulse; because all registers have
been cleared, this will get through equally
(weighted by the bi parameters) to all units.
For the system to come to equilibrium, a se-
ries of input pulses must then be sent that
condition (fill) the various reservoirs, layers,
or units to their various asymptotic levels.

The state of each unit is summed by Equa-
tion 17. Whereas counters are digital all-or-
none devices, Equation 17 sums continuous
variables for a continuous aggregate memory
strength. It is more accurate to call the Stad-
don-Higa counter an ‘‘accumulator.’’ Same
function, slightly different capabilities: If you
count things small enough, then counters are
not discriminable from accumulators. In the
process of accumulation, MTS does not re-
tain information about the individual regis-
ters. Those are weighted (by the b parame-
ters) and summed. This is just as well,
because animals usually make binary tempo-
ral decisions and primarily need to discrimi-

nate ‘‘not yet’’ from ‘‘now.’’ Any more infor-
mation could be counterproductive.

This is a dynamic system, so it is not sur-
prising that it is path dependent: The effect
of a single time interval depends on those
which came before, and on the disequilibri-
um state of the system. To be understood, it
really has to be simulated. This is not hard to
do. Equations 15 through 18 are simple when
you work them through. Just pick a discrete
time interval small enough (say, 0.1 s) and
input timing signals at longer intervals (say,
10 s) and play with the parameters. Try it.
That is the only way you will understand it. If
it doesn’t work, you can blame the authors.
You might even get a publication out of it.

The MTS Pacemaker

MTS does not have a pacemaker. It has a
series of continuous modelettes of temporal
intervals (each of the layers) whose accuracy
decreases exponentially with the interval to
be timed. It is as though there were as many
pacemakers as layers, each with a different
resonance. This aspect is similar to the spec-
tral approach of Grossberg and Schmajuk
(1989) and the delay lines of Moore and Des-
mond (1992). The layers hum as an increas-
ing function of the proximity of the stimulus
to their resonant frequency, and the accu-
mulator sums the chorus. They achieve their
ability to predict Weber functions, as well as
functions not so Weberian, from the tuning
of this aeolian harp. Octaves (Figure 6, l 5
2) do quite well. Deviations from a perfectly
horizontal line are also interesting, as they
may come closer to real data than a perfect
Weber’s law.

Do We Keep It or Go for the Hose?

The parents tell us that this kid is going to
grow up to be president, after having served
in the space corps and composing some tone
poems of local reknown. Furthermore, the
kid will be inexpensive to keep, not needing
a pacemaker, which the village can now sell
to a used clock shop up the coast. Best of all,
it is unsullied, so far. So, what do we think?

Nice thing is, a village needs more than
one model. And this one is quite different;
diversity is important, which we knew even
before our bureaucrats told us so, and re-
mains true despite them. But more than
models, a village needs teams: an MTS team
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and an SET team and an LeT team. The MTS
coaches have scored some points on the SET
coaches, but we have yet to see how well they
can defend their own goal. It is worth nur-
turing this little model for a while; see if it
lives up to its parents’ expectations. It has the
potential, but more players are desperately
needed for a meaningful competition.

Modeling Modeling
To think about models, we need models of

the process; restrictions on form and criteria
for success and handicapping for assump-
tions. We have yet to evolve consensus on this
most central preoccupation of scientists. I
think of models as structures that exist in a
domain different than the subject, and are
constructed according to design principles
that are dictated by theories. Parsimony (sim-
plicity), power (the range of phenomena that
can be covered), and accuracy (not too many
mispredictions or omissions) are all impor-
tant. But so also is excitement, the sense that
models are comprehensible and testable, and
that each of us can use them to score goals
of our own. Science has many game-like as-
pects; if we model it as a game, with referees,
teams, rules, matches, prizes, and penalties,
we can come to some important conclusions:
One match is not a season; a loss is less
shameful than refusing to play; clear rules
and agreed-upon goals are important; unbi-
ased referees are essential. Perhaps most im-
portant, it is not a zero-sum game. Models

that can take the field are to everyone’s ad-
vantage; contests such as this will not only im-
prove all teams, but they will draw partici-
pants from other domains to refresh the
experimental analysis of behavior.

Now then, anyone for an expansion team?
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Birkhäuser.

Moore, J. W., & Desmond, J. E. (1992). A cerebellar neu-
ral network implementation of a temporally adaptive
conditioned response. In I. Gormezano & E. A. Was-
serman (Eds.), Learning and memory: The behavioral and
biological substrates (pp. 347–368). Hillsdale, NJ: Erl-
baum.

Skinner, B. F. (1938). The behavior of organisms. New York:
Appleton-Century-Crofts.

Staddon, J., & Higa, J. (1997). Multiple time scales in
simple habituation. Psychological Review, 103, 720–733.


